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In this paper we will describe a method for computing exact distribution of runs and

patterns in a sequence of discrete trial outcomes generated by an i.i.d or Markov

source. The method, described for the first time by J. Fu and M.V. Koutras in

[4], is entitled Markov Chain Imbedding Technique (for short MCIT) and shows a

different approach than the traditional one which is based on combinatorial argu-

ments. The main advantage of this method is that it can be applied not only in the

i.i.d. cases, as most of the combinatorial approaches does, but also to Markov de-

pendent multi-state trials (not matter what counting procedure is adopted:overlap

vs. non-overlap). The paper is organized as follows: in the first section we will

describe the general method and we will find the exact distribution of the number

of occurrences of a pattern in n trials; in the second section we will describe the

waiting time distributions of simple and compound patterns; the third section stud-

ies generating functions, mean, variance and large deviation approximations and in

the forth section we will give worked examples. We mention that most of the results

form are taken from [9].

1. Description of the method

We begin this section by setting the framework and defining the necessary notions

used throughout the paper. Let us consider that we have a sequence (Xt)t=1,n

of n multi-state trials, each of which has m ≥ 2 states or symbols, labeled by

S = {b1, . . . , bm}.

Definition 1.1. We say that Λ is a simple pattern if Λ = bi1bi2 . . . bik where bij is a

symbol from S for all j = 1, k.

Notice that the length of the pattern is fixed (k) and the symbols can be repeated,

for example the pattern Λ = b1b1b1b2b2 is a simple pattern.

Definition 1.2. Let Λ1 and Λ2 be two simple patterns of lengths k1 6= k2. We say

that the patterns are distinct if neither Λ1 ⊂ Λ2 nor Λ2 ⊂ Λ1. More, we define

Λ1 ∪ Λ2 to denote the occurrence of either Λ1 or Λ2.
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Definition 1.3. We say that a pattern Λ is a compound pattern if it can be written

as the union of simple distinct patterns,i.e. Λ = ∪li=1Λi where 1 < l < ∞ and Λi

are simple distinct patterns.

An example of a compound pattern can be Λ = Λ1 ∪ Λ2 ∪ Λ3 where Λ1 = aaccga,

Λ2 = acgtt and Λ3 = ggactc. Notice that in this example we used the alphabet

S = {a, c, g, t}.
Now, given a simple or a compound pattern Λ we will denote by Xn(Λ) the random

variable that represents the number of occurrences of the pattern Λ in a sequence of

n multi-state trials, using both overlapping and non-overlapping counting scheme.

We have to be careful about these counting procedures since Xn(Λ) differs from one

another as the following example shows: lets suppose that we have a simple pattern

Λ = ACA and a realization of a sequence of 20 four-state trials over the alphabet

S = {A,C,G, T}
ATCACACATAGACACAGTAC

then we have X20(Λ) = 2 under non-overlapping scheme and X20(Λ) = 4 under over-

lapping scheme. One of the purposes of this section is to find the exact distribution

of Xn(Λ) under both counting procedures (overlap and non-overlap), and when the

source is in one of the following cases:

(1) (Xt)t=1,n is a sequence of i.i.d. multi-state trials,

(2) (Xt)t=1,n is a sequence of independent but not identically distributes multi-

state trials,

(3) (Xt)t=1,n is a sequence of homogeneous Markov dependent multi-state trials,

(4) (Xt)t=1,n is a sequence of non-homogeneous Markov dependent multi-state

trials.

We will define next the central concept of the paper, the Markov chain imbeddable

random variable, as in [4] and [13]. For a given n let Γn = {0, 1, . . . , n} be a index

set, Ω = {a1, a2, . . . , as} be a finite state space and ln = max {x|P(Xn(Λ) = x) > 0}.

Definition 1.4. We say that a non-negative integer valued random variable Xn(Λ)

is finite Markov chain imbeddable if:

a) there exists a finite Markov chain {Yt|t ∈ Γn} defined on a finite state space

Ω with initial probability vector ξ0,

b) there exists a finite partition {Cx|x = 0, 1, . . . , ln} on the state space, and

c) for every x = 0, 1, . . . , ln we have

P(Xn(Λ) = x) = P(Yn ∈ Cx|ξ0)
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For the next result we need to do a little work. Lets remember that given a non-

homogeneous Markov chain, Zt, on a finite state space Ω = {a1, a2, . . . , as} the

conditional probabilities

P(Zt = j|Zt−1 = i) = pij(t),

with i, j ∈ Ω are called one-step transition probabilities at time t, and the corre-

sponding one-step s× s transition matrix at time t is given by:

Mt = (pij(t))1≤i,j≤s =


p11(t) p12(t) . . . p1s(t)

p21(t) . . . . . . . . .
...

. . . . . .
...

ps1(t) ps2(t) . . . pss(t)


s×s

If the Markov chain is homogeneous then M = Mt for all t = 1, 2. . . . . The n

step transition probabilities, P(Zt = j|Zt−n = i) = p
(n)
ij (t), can be found using the

Chapman-Kolmogorov equation:

p
(n)
ij (t) =

∑
k∈Ω

p
(r)
ik (t)p

(n−r)
ij (t+ r)

for every intermediate values of r = 1, n− 1. The n step transition matrix will be

M (n) =
∏n

t=1Mt and in the homogeneous case M (n) = Mn. Based on these equa-

tions, and given that the initial probability vector is ξ0 = (P(Z0 = a1), . . . ,P(Z0 =

as)), we can find that the conditional probability of the chain state Zn ∈ C for

C ⊂ Ω is given:

P(Zn ∈ C|ξ0) = ξ0

(
n∏
t=1

Mt

)
U ᵀ(C)

where U(C) =
∑

aj∈C ej and ej = (0, . . . , 1, . . . , 0)1×s is a row vector with 1 on the

j position and 0 otherwise. The main result in [4], and an important part of the

MCIT approach, is a direct application of the Chapman-Kolmogorov equations:

Theorem 1.5. If Xn(Λ) is finite Markov chain imbeddable, then

P(Xn(Λ) = x) = ξ0

(
n∏
t=1

Mt

)
U ᵀ(Cx),

where ξ0 is the initial probability vector, and Mt, t = 1, . . . , n are the transition

probability matrices of the imbedded Markov chain.

We will define next a new concept based on a particular form of the transition matrix

corresponding to the imbedded chain, namely the notion of Markov chain imbeddable
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random variables of binomial type (MVB) as it is named in [13]. Koutras and

Alexandrou ([13]) showed that many run statistics (Nn,k, Mn,k, etc. as we will see in

examples section) can be viewed as MVB’s with this particular type of matrix, a bi-

diagonal matrix with non zero blocks only on the main diagonal and on the diagonal

next to it. Let first assume that we are in the framework of the Definition 1.4 and

suppose that every subset of the partition of Ω has the same cardinality, more exactly

r = |Cx| and Cx = {cx0, . . . , cxr} for x = 0, ln (such a partition always exists since

we can expand the cardinality of Cx by adding hypothetical states which not affect

the chain behavior).

Definition 1.6. A random variable Xn(Λ) is MVB if:

a) Xn(Λ) can be imbedded in a Markov chain like in Definition 1.4,

b) P(Yt = cyj|Yt−1 = cxi) = 0 for all y 6= x, x+ 1.

From the above definition we observe that for any MVB we can define the following

r × r matrices:

At(x) = (aij(t))i,j = (P(Yt = cxj|Yt−1 = cxi))i,j,

and

Bt(x) = (bij(t))i,j = (P(Yt = cx+1j|Yt−1 = cxi))i,j.

Using these matrices, the transition probability matrices of the imbedded chain will

be a bi-diagonal block matrix given by:

Mt =



At(0) Bt(0)

At(1) Bt(1) O
. . . . . .

. . . . . .

O At(ln − 1) At(ln − 1)

At(ln)


for t = 1, n. Looking at the matrix Mt we observe that it can written as a sum

of a diagonal matrix (with At(x) components) and an upper diagonal matrix (with

Bt(x) components). Also lets notice that if for t = 1, n we denote the row vector

by α(x) = (P(Yt = cx1), . . . ,P(Yt = cxr)) then

P(Xn(Λ) = x|ξ0) = αn(x)1ᵀ, for all x = 0, 1, . . . , ln.

where 1 = (1, . . . , 1)1×r. These remarks leads to the main theorem in [13], which

gives a recursive way to find the distribution of Xn(Λ):
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Theorem 1.7. The following recursive equations holds:

αt(0) = αt−1(0)At(0)

αt(x) = αt−1(x− 1)Bt(x− 1) +αt−1(x)At(x), x = 1, . . . , ln.

The binomial type nomenclature comes from the similarity between the above equa-

tions and the binomial distribution. In the last section we will see examples with

this type of random variables.

Until now we assumed that the random variable is Markov chain imbeddable (MCI),

both in general or MVB case. The main question is: given a random variable Xn(Λ)

associated with the simple or compound pattern Λ, can we always imbed a Markov

chain like in Definition 1.4 and if the answer is yes, how can we construct a such a

chain? The answer to this question, as is showed in [5], is given by the forward and

backward principle. We will describe this principle in detail for both non-overlap

and overlap counting schemes.

Lets first assume that we are in the case of non-overlap counting and that

(Xt)t=1,n is a sequence of n Markov dependent multi-state trials over the alpha-

bet S = {b1, . . . , bm}. As before Xn(Λ) denotes the number of (non-overlapping)

occurrences of the pattern Λ (simple or compound) in n trials. For a better under-

standing of the principle we will consider the following example:

Example 1.8. Lets consider that the sequence (Xt)t=1,n is Markov dependent (ho-

mogeneous) three-state trials with transition probability matrix

A =

 p11 p12 p13

p21 p22 p23

p31 p32 p33


over the alphabet S = {b1, b2, b3}, and take the simple pattern Λ = b1b1b1b2. We

will give the method in four steps:

i) First we will decompose the pattern Λ = b1b1b1b2 into the set of all sequential

subpatterns denoted by S(Λ) = {b1, b1b1, b1b1b1, b1b1b1b2} and define

E = S ∪ S(Λ) = {b1, b2, b3, b1b1, b1b1b1, b1b1b1b2}

ii) Second, if ω = (x1, . . . , xn) is a realization of the sequence (Xt)t=1,n, we define

the state space

Ω = {(u, v)|u = 0, 1, . . . , [n/4], v ∈ E} ∪ {∅}�{(0, b1b1b1b2)}
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and a Markov chain

Yt = (Xt(Λ), Et), t = 1, 2, . . . , n

such that Yt(ω) = (u, v) ∈ Ω, where

u = Xt(Λ)(ω) - the total number of non-overlapping occurrences of the pattern

Λ in the first t trials, counting forward from the first to the t-th trial

v = Et(ω) - the longest ending block in E , counting backward from Xt.

Lets consider the following realization ω = (b2b3b1b1b2b1b1b1b2b1b3b1) and try to apply

the described principle:

Y1(ω) = (0, b2) Y5(ω) = (0, b2) Y9(ω) = (1, b1b1b1b2)

Y2(ω) = (0, b3) Y6(ω) = (0, b1) Y10(ω) = (1, b1)

Y3(ω) = (0, b1) Y7(ω) = (0, b1b1) Y11(ω) = (0, b3)

Y4(ω) = (0, b1b1) Y8(ω) = (0, b1b1b1) Y12(ω) = (0, b1)

Notice that for every given ω, the imbedded Markov chain is uniquely determined

by the above procedure.

iii) The imbedded Markov chain (Yt)t=1,n is homogeneous, and if its transition prob-

ability matrix is M we will show how to determine it. Lets suppose that we are in

Y8(ω) = (0, b1b1b1), we will have

(0, b1b1b1)→


(0, b1b1b1), X9 = b1 and the probability is p11

(1, b1b1b1b2), X9 = b2 and the probability is p12

(0, b3), X9 = b3 and the probability is p13

and zero to any other state. Notice that in the definition of the state space Ω we

inserted the state ∅ (dummy state) so that the chain will begin from that state

P(Y0 = ∅) = 1 and the transition probabilities are given by the initial distribution,

that is P(Y1 = bi|Y0 = ∅) = pi with i = 1, 2, 3. Also in the definition of the state

space we deleted the state (0, b1b1b1b2) since if the ending block is equal with the

pattern then the number of occurrences of Λ is ≥ 1.

iv) The last step deals with the construction of a partition of the state space such

that the conditions in Definition 1.4 to be fulfilled. We consider the following par-

tition:

Cx =


C∅ = {∅}
C0 = {(0, b1), (0, b2), (0, b3), (0, b1b1), (0, b1b1b1)}
Cz = {(z, v)|v ∈ E , z = 1, . . . , [n/4]}.
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In our case if we take n = 5 then the state space is given by:

Ω ={∅, (0, b1), (0, b2), (0, b3), (0, b1b1), (0, b1b1b1), (1, b1b1b1b2),

(1, b1), (1, b2), (1, b3), (1, b1b1), (1, b1b1b1)}

and the transition matrix:

M =



∅ 0 p1 p2 p3 0 0 0 0 0 0 0 0

(0, b1) 0 0 p12 p13 p11 0 0 0 0 0 0 0

(0, b2) 0 p21 p22 p23 0 0 0 0 0 0 0 0

(0, b3) 0 p31 p32 p33 0 0 0 0 0 0 0 0

(0, b1b1) 0 0 p12 p13 0 p11 0 0 0 0 0 0

(0, b1b1b1) 0 0 0 p13 0 p11 p12 0 0 0 0 0

(1,Λ) 0 0 0 0 0 0 0 p21 p22 p23 0 0

(1, b1) 0 0 0 0 0 0 0 0 p12 p13 p11 0

(1, b2) 0 0 0 0 0 0 0 p21 p22 p23 0 0

(1, b3) 0 0 0 0 0 0 0 p31 p32 p33 0 0

(0, b1b1) 0 0 0 0 0 0 0 0 p12 p13 0 p11

(0, b1b1b1) 0 0 0 0 0 0 0 0 0 0 0 1


In what follows, based on the Example 1.8, we will describe the general procedure.

First, suppose that we are in the state Yt−1 = (x, z) ∈ Ω at time t− 1, Xt = bj ∈ S
and denote by

(u, v) =< (x, z), bj >Ω

the state (u, v) ∈ Ω resulted from forward-backward procedure (described in Exam-

ple 1.8) knowing that at time t we have Xt = bj. Also given a state (x, z) ∈ Ω, lets

denote by l(z) the last symbol in the ending block z.

Theorem 1.9. Assuming that (Xt)t=1,∞ is a homogeneous Markov chain with tran-

sition matrix A = (pij)s×s, and Λ = ∪li=1Λi is a compound pattern of length k

(each simple pattern Λi has the same length k), then the imbedded Markov chain

{Yt = (Xt(Λ), Et)}t=1,n, corresponding to the r.v. Xn(Λ) has the following compo-

nents:

i) the state space

Ω ={∅} ∪ {(x, z)|x = 0, 1, . . . , [n/k], z ∈ E}

�{(0,Λi)|i = 1, 2, . . . , l}�{([n/k], z)|k[n/k] + z(k) > n},

where E = S ∪li=1 S(Λi) and z(k) ≡ (length of z) mod k
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ii) the transition probabilities are defined by

p(x,z)(u,v) =



pj, if (x, z) = ∅, u = 0, v = bj for all bj ∈ S
pij, , if (u, v) =< (x, z), bj >Ω, x ≤ [n/k], bj ∈ S,

L(z) = bi, kx+ z(k) < n,

1, if (u, v) = (x, z), x = [n/k],

and k[n/k] + z(k) = n,

0, otherwise

iii) the partition of Ω is given by

C∅ = {∅}
C0 = {(0, z)|z ∈ E}�{(0,Λi)|i = 1, 2, . . . , l}
Cx = {(x, z)|z ∈ E , x = 1, . . . , [n/k]− 1}
C[n/k] = {([n/k], z)|z ∈ E , k[n/k] + z(k) ≤ n}.

From the above theorem we can deduce that the distribution of Xn(Λ) can be

computed by

P(Xn(Λ) = x) = P(Yn ∈ Cx) = ξ0M
nU ᵀ(Cx)

where M is the d×d transition matrix (|Ω| = d), ξ0 is the initial distribution of the

chain given by the dummy state (that is P(Y0 = ∅) = 1) and U(Cx) =
∑

ar∈Cx
er.

The forward-backward principle it is still applicable in a more general framework,

where the compound pattern is not compose from simple patterns of the same length,

but the Theorem 1.9 is very difficult to write. This problem can be solved using

the duality relationship between Xn(Λ) and waiting time W (Λ) as we will see in the

next section.

We will end this section with a little discussion about the case of overlap counting.

In this counting scheme we have to do some small modifications to the above pro-

cedure, since the main difference between this type of counting and the non-overlap

one is that when the pattern is formed, a part of it will be counted toward forming

the next pattern (up to at last length(Λ) − 1). So, for a pattern Λ we will define

the ending block Ê as the longest ending block (Ê 6= Λ) that, after each occurrence

of Λ under the overlap counting, can be assigned as the initial block for the next

occurrence of Λ. To get a better understanding lets give some examples:

• if Λ = b1b2b1 then Ê = b1

• if Λ = b1b1 . . . b1︸ ︷︷ ︸
k

then Ê = b1b1 . . . b1︸ ︷︷ ︸
k−1
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We have to be careful that in overlap counting the maximum number of occurrences

of a pattern of length k in a sequence of n trials is given by

l̂n = 1 +

[
n− k
k − |Ê|

]
.

The second example (Example 4.2) in the last section shows the main differences

between these two counting scheme.

Remark 1.10. In [3] we encounter another form of the forward-backward principle

which is a slightly modification of the above one, but it is interesting to be mentioned.

Given the simple pattern Λ = bi1bi2 . . . bik we decompose it into k − 1 subpatterns

labeled 1 = bi1 , 2 = bi1bi2 , . . . , k − 1 = bi1bi2 . . . bik−1
and denote by 0 none of the

subpatterns 1, . . . , k − 1. We can see that these subpaterns are the ending blocks

mentioned before (inclusive 0). For a realization ω = (x1, . . . , xn) of the sequence

Xt, where xi is the outcome of the i-th trial, we define the imbedded Markov chain

(Yt)t=1,n operating on ω by Yt = (u, v), where u is as in the number of occurrences

of the pattern Λ until time t and v is the ending block (the definition is the same

as in the previous case). The state space is given by:

Ω = {(u, v)|u = 0, 1, . . . , [n/k]; v = 0, 1, . . . , k − 1}

and the transition probabilities:

P(Yt = (u′, v′)|Yt−1 = (u, v)) =



∑
v→v′

pij1 ij2 , if u′ = u ∈ {0, 1, . . . , [n/k]}

and v, v′ ∈ {0, 1, . . . , k − 1}
pik−1ik , if u′ = u+ 1 for u = 0, [n/k]− 1,

v′ = 0 and v = k − 1,

0, otherwise,

where
∑
v→v′

denotes the sum over all states such that the ending block v transforms

into v′, and pij1 ij2 are the corresponding probabilities knowing that the last symbol

was bij1 and the new one is bij2 . Like in the previous approach we define the partition

of the state space by:

Cx = {(x, v)|(x, v) ∈ Ω, v = 0, 1, . . . , k − 1}, for x = 1, 2, . . . , [n/k].
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2. Waiting time distributions

The main purpose of this section is to give a general method for finding the exact

distribution of the waiting time random variable associated with a compound pat-

tern. The development of what follows is according to [2], [7], [9], [11].

We will begin by some definitions. Lets suppose that we are in the framework

described in Section 1.

Definition 2.1. We have the following notions:

• the waiting time for a simple pattern Λ = bi1bi2 . . . bik

W (Λ) = inf{n|Xn−k+1 = bi1 , . . . , Xn = bik}

= minimum number of trials required to observe the pattern Λ

• the waiting time of a compound pattern Λ = ∪li=1Λi

W (Λ) = minimum number of trials required to observe the occurrence of

one of the simple patterns Λ1, . . . ,Λl

• the waiting time of the r-th occurrence of the pattern Λ

W (r,Λ) = minimum number of trials required to observe the r-th occurrence

of the pattern Λ

We can observe now that, in the context of Definition 2.1, we have the following

relationship ([5]) between the random variables Xn(Λ) and W (r,Λ) corresponding

to the pattern Λ:

P(Xn(Λ) < r) = P(W (r,Λ) > n).

The above relation is known also as dual property and justifies in a sense the study of

the waiting time distributions. Next, we will give some basic results about Markov

chains that will characterize the probability of the first-entry of the chain in an

absorbing state. These results are the basis of the main results regarding the waiting

time distributions.

An absorbing state is a state in which once entered, the chain cannot escape. If we

have a (homogeneous) Markov chain, (Yt)t=1,∞, defined on the state space Ω, and if

we denote the set of the absorbing states by A = {α1, . . . , αk}, then the probability

transition matrix M can be written (after proper arrangements):

M =

(
Ω�A N(m−k)×(m−k) C(m−k)×k

A Ok×(m−k) Ik×k

)
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where m = |Ω|. The matrix N is called the essential matrix and plays an important

role in the development of MCIT, as we will see. Lets denote the initial distribution

(assuming that the chain doesn’t start from an absorbing state) by ξ0 = (ξ : 0)1×m,

where ξ = (ξ1, . . . , ξm−k) such that
m−k∑
i=1

ξi = 1. The following result is due to [3]:

Theorem 2.2. We have the following results:

i) the probability that the chain enters first the set of absorbing states at time n is

given

P(Yn ∈ A, Yn−1 /∈ A, . . . , Y1 /∈ A|ξ0) = ξNn−1(I −N )1ᵀ

where 1 = (1, . . . , 1)1×(m−k),

ii) for any state i ∈ Ω�A

P(Yn = i, Yn−1 /∈ A, . . . , Y1 /∈ A|ξ0) = ξNneᵀi

where ei = (0, . . . , 1, . . . , 0)1×(m−k) with 1 on the i-th position,

iii) for any j ∈ A we have

P(Yn = j, Yn−1 /∈ A, . . . , Y1 /∈ A|ξ0) = ξNn−1Cj

where Cj is the j-th column of the matrix C.

We will turn now our attention to the waiting time problem. Given a sequence

of Markov dependent m-state random variables (Xt)1,∞ over the alphabet S =

{b1, . . . , bm}, and a compound pattern Λ = ∪li=1Λi, we want to show that the wait-

ing time random variable corresponding to this pattern, W (Λ), is Markov chain

imbeddable in the sense of Definition 1.4. For that we will define the imbedded

chain, the state space where it is defined and its transition probabilities. The state

space is (see the resemblance with the forward-backward principle):

Ω = {∅} ∪ S ∪li=1 S(Λi)

where S(Λi) is the collection of all subpatterns of Λi (in the sense described in the

first section). Let αi be the absorbing state with respect to the simple pattern Λi,

for i = 1, l, and denote by A = {α1, . . . , αl} the set of all these states.

For Yt−1 = u ∈ Ω�A�{∅} and Xt = z ∈ S we define

v = < u, z >Ω

= the longest ending block in Ω with respect to

the forward and backward procedure,
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and the set

[u : S] = {v|v ∈ Ω, v =< u, z >Ω, z ∈ S}

Now we are ready to give the main result of the section (due to [9] and [3]):

Theorem 2.3. Assuming that (Xt)t=1,∞ is a sequence of Markov-dependent m-state

trials with transition probabilities pij, and Λ = ∪li=1Λi is a compound pattern, then

i) the imbedded Markov chain Yt, defined on the state space Ω has the transition

probabilities given by

pu,v = P(Yt = v|Yt−1 = u) =



pz, if u = ∅, v = z, z ∈ S
pxz, if u ∈ Ω�A�{∅}

v ∈ [u : S] and Xt = z

1, if u ∈ A and v = u

0, otherwise

where x is the last symbol of u, pz is the initial probability given Y0 = ∅ to z.

The transition matrix has the form:

M =

(
Ω�A N(d−l)×(d−l) C

A O I

)
d×d

where |Ω| = d.

ii) given the initial distribution ξ0 = (ξ : 0), the waiting time distribution of the

compound pattern Λ is given by:

P(W (Λ) = n) = ξNn−1(I −N )1ᵀ

iii) for every j = 1, 2, . . . , l

P(W (Λ) = n,W (Λj) = n) = ξNn−1Cj

where Cj is the j-th column of the matrix C.

An important aspect is to observe that the imbedded chain highly depends on its

initial distribution. Based on Theorem 2.3, Fu and Chang [7] developed an algorithm

for computing the waiting time distribution. Also Chang developed three more

algorithms in [3] for the waiting time distribution of the r-th occurrence of a pattern.

Examples regarding the application of these results can be found in the last section.
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Remark 2.4. In what follows we will speak about some extensions of the above

results in the case of W (r,Λ). Considering the approach developed by Chang in [2]

and the above hypothesis, we construct the imbedded Markov chain {Yt|t = 0, 1, . . . }
on the state space Ω(r) having the form

Ω(r) = {∅} ∪ Ω1 ∪ Ω2 ∪ A

where A = {α1, . . . , αl} is the set of all the absorbing states αj corresponding to the

r-th occurrence of the pattern Λj, and Ω1 and Ω2 are defined

Ω1 = {(u, v)|u = 0, . . . , r − 1; v ∈ S ∪ S(Λ1) · · · ∪ S(Λl)�A},
Ω2 = {(u, v)|u = 1, . . . , r − 1; v ∈ B}

where B is the collection of the last symbols of Λi, i = 1, . . . , l. To distinguish

between the elements of B and S we will add some marks (asterisk, hat) to the

former ones. Now, it is easy to observe that we can relabel the elements of the state

space and obtain Ω(r) = {1, . . . , k, α1, . . . , αl}, which ensures us that the probability

transition matrix M (r) of the imbedded chain associated with W (r,Λ) has the form

mentioned in Theorem 2.3. An example that will illustrate this procedure it is given

in the last section (Example 4.4).

3. Probability generating functions, mean, variance and

approximations

Since probability generating functions (p.g.f.) play and important role in the study

of the probability distributions we dedicate a whole section to their study and related

aspects. We will deal mostly with the p.g.f. of waiting time distributions associated

to a simple or compound pattern, and we will develop some recurrence relations for

finding the mean and the variance (which will be very useful in simulations).

Considering the context of Theorem 1.5 we can easily write the p.g.f. of the random

variable Xn(Λ) as:

ϕXn(Λ)(s) = E[sXn(Λ)] = ξ0

(
n∏
t=1

Mt

)(
ln∑
x=0

sxU ᵀ(Cx)

)
and the k-th moment

E[Xk
n(Λ)] = ξ0

(
n∏
t=1

Mt

)(
ln∑
x=0

xkU ᵀ(Cx)

)
.

Referring us to the waiting time random variable associated to a pattern Λ we have

the following result ([7] and [3]) which is a direct application of Theorem 2.2:
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Theorem 3.1. Suppose that M is the probability transition matrix (with the form

given in Theorem 2.3) of the imbedded Markov chain for the waiting time random

variable W (Λ) of a compound pattern Λ, then

i) the p.g.f. is given by

ϕW (s) = 1 + (s− 1)ξ(I − sN )−11ᵀ,

ii) and the mean

E[W (Λ)] = ξ(I −N )−11ᵀ.

The above theorem gives a way of computing the mean and the p.g.f. of the random

variable W (Λ), but as we can see it is based on the inverse of the essential matrix,

and in many cases this is very difficult to compute. The next theorem is due to Fu

and Chang ( [7] and [3]) and gives a recurrence relationship for the mean and the

p.g.f.:

Theorem 3.2. For the waiting time random variable W (Λ) we have that

i) the mean waiting time can be expressed as

E[W (Λ)] = S1 + S2 + · · ·+ Sk,

where (S1, S2, . . . , Sk) is the solution of the system of ecuations

Si = ξeᵀi + (S1, . . . , Sk)N (i), for i = 1, 2, . . . , k,

where N (i) are the column vectors of the essential matrix N ,

ii) the p.g.f. is given by

ϕW (s) = 1 +

(
1− 1

s

)
ΦW (s),

where ΦW (s) is the probability generating function of the sequence of cumulative

probabilities {P(W (Λ) ≥ n)}∞n=1 which can be expressed as

ΦW (s) = φ1(s) + φ2(s) + · · ·+ φk(s)

with (φ1, . . . , φk) being the solution of the system

φi(s) = sξeᵀi + s(φ1(s), . . . , φk(s))N (i), for i = 1, 2, . . . , k.

It is worth mentioning that due to Theorem 2.2 we have that the cumulative prob-

ability of the waiting time is given by:

P(W (Λ) ≥ n) = ξNn−11ᵀ,
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and that the expression of Si in Theorem 3.2 is

Si =
∞∑
n=1

ξNn−1eᵀi

and that of φi(s) is

φi(s) =
∞∑
n=1

snξNn−1eᵀi .

As we mentioned before, this theorem is very important in computer simulations

and algorithms for symbolic computations was developed by Chang in [3]. For the

computation of the variance of the waiting time distribution W (Λ) similar recursive

relations were deduced in [17]. Before the main result of the paper [17], lets observe

that due to Theorem 3.2, in order to deduce the variance of W (Λ), we will need to

compute only the second moment of the waiting time random variable.

Theorem 3.3. For the waiting time random variable W (Λ) we have

E[W 2(Λ)] =
l∑

j=1

(V1, . . . , Vk)Cj

where (V1, . . . , Vk) is the solution of the system of ecuations

Vi = (V1, . . . , Vk)N (i) + 2Ti − Si, for i = 1, . . . , k,

and where Si are given in Theorem 3.2, and (T1, . . . , Tk) is the solution of the system

of ecuations

Ti = (T1, . . . , Tk)N (i) + Si, for i = 1, . . . , k.

In the case of the waiting time until the r-th occurrence, we notice that we can

express the random variable W (r,Λ) as the sum of r inter-waiting times

W (r,Λ) = W1(Λ) + · · ·+Wr(Λ).

If we consider the case in which Xt are i.i.d. m-state trials under non-overlapping

counting, then {Wi(Λ)|i = 1, r} are i.i.d. random variables and the p.g.f. of W (r,Λ)

is given by

ϕW (r,Λ)(s) = (φW1(Λ)(s))
r.

In the overlapping counting scheme, then W2(Λ), . . . ,Wr(Λ) are i.i.d. random vari-

ables and the p.g.f. of W (r,Λ) is given by

ϕW (r,Λ)(s) = φW1(Λ)(s)(φW2(Λ)(s))
r−1.
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Detailed explanations about how to derive the p.g.f. in the case of the waiting time

until the r-th occurrence are given by Chang in [2] where he use the generating

functions of waiting time to the first occurrence of Λj, and Λj occurs first among

all simple patterns Λ1, . . . ,Λl (denoted by W (Λj|Λ1, . . . ,Λl)) as is described in the

following theorem:

Theorem 3.4. The probability generating function for the waiting time random

variable W (r,Λ) under the non-overlapping counting is given by

ϕW (r,Λ)(s) =
lr∑
i=1

r∏
j=1

ψWj(Λij
|Λ1,...,Λl)(s|ξ∅L(Λij−1

)
(Λij−1

))

where ij ∈ {1, 2, . . . , l}, L(Λij−1
) is the last symbol of Λij−1

for j = 2, . . . , l, and

ξ∅L(Λi0
)

= ξ by convention.

Next, based on the work of Fu, Wang and Lou in [8] and Fu and Johnson in [12],

we will give some approximation results using the methods of spectrum analysis

and the large deviation approach. We will begin with some preliminary notations.

Let λ1, . . . , λw be the ordered eigenvalues, in the sense |λ1| ≥ |λ2| ≥ . . . |λw|, of the

essential matrixN as described in Theorem 2.3. Due to Perron-Frobenius Theorem,

and the fact that N is a sub-stochastic matrix, we know that the largest eigenvalue

is unique, real and between zero and one (0 < |λ1| < 1). Since the vector 1ᵀ can

always be decomposed

1ᵀ =
w∑
i=1

aiηi

where ηi is the column eigenvector associated to the eigenvalue λi (Nηi = λiηi) we

have the following

Theorem 3.5. If the transition matrix M corresponding to the waiting time W (Λ)

has the form given by Theorem 2.2, then

i)

P(W (Λ) ≥ n) =
w∑
i=1

Ciλ
n−1
i ,

where Ci = aiξηi, for i = 1, 2, . . . , w,

ii)

ΦW (s) =
∞∑
n=1

snP(W (Λ) ≥ n) =
w∑
i=1

Cis

1− sλi
,

and ΦW (s) exists for |s| < 1
λ1

,
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iii)

ϕW (s) = 1 +

(
1− 1

s

) w∑
i=1

Cis

1− sλi
, |s| < 1

λ1

.

In [8] the authors develop a large deviation approximation for the longest run in a

sequence of two state Markov-dependent trials. Their main result is based on the

following theorem, which shows that the tail probability of the waiting time random

variable W (Λ), converge to zero with an exponential rate:

Theorem 3.6. We have the following relation:

lim
n→∞

1

n
logP(W (Λ) ≥ n) = −β(Λ)

where β(Λ) = − log λ1. More,

lim
n→∞

P(W (Λ) ≥ n)

C1λ
n−1
1

= 1.

Fu and Johnson gives in [12] an approximation for the number of non-overlapping

occurrences of a simple pattern (Λ = bi1 . . . bik) in n-trials generated by a Markov

source.

Theorem 3.7. For any fixed r ≥ 0,

P(Xn(Λ) = r) ∼ abr
(
n− r(k − 1)

r

)
(1− λ1)kλn−k1 ,

where

a =
d∑
j=1

ajξηj and b =
d∑
j=1

ajξΛηj

and where d is the algebraic multiplicity of λ1, and ξΛ is the row vector correspond-

ing to the inter-arrival times W2(Λ), . . .Wk(Λ) (due to the duality relation between

Xn(Λ) and W (r,Λ)) such that P(Wj(Λ) = n) = ξΛN
n−1(I −N )1ᵀ for j ≥ 2.

In the ending of this section we should mention that in [14] the distribution of Xn(Λ)

is studied with the help of double generating functions G(s, t), which is shown that

can be written in terms of p.g.f. of the waiting time W (Λ). A more general context

for the study of the waiting time distributions of simple and compound patterns is

presented by Fu and Wendy Lou in [11], where the framework consists in a sequence

of r-th order Markov-dependent multi-state trials. They take into consideration

the ergodic probability of a irreducible, aperiodic r-th order homogeneous Markov

chain and express the distribution of the waiting time W (Λ) with their help giving

a similar result with Theorem 2.3.
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4. Worked examples

In this section we will give some examples for a better understanding of the MCIT.

Example 4.1. In this example we will show that the number of non-overlapping

consecutive k successes, Nn,k, in a sequence of n two-state trials generated by a

Markov source, is an imbeddable random variable in the sense of Definition 1.6.

Lets suppose that (Xi)i=1,n is a sequence of homogeneous Markov dependent two-

state trials, with outcomes S and F , and with the probability matrix

P =

(
pSS pSF

pFS pFF

)

It is easy to see that for the random variable Nn,k, the associated pattern (Xn(Λ))

is given by Λ = SS . . . S︸ ︷︷ ︸
k

. In the view of Theorem 1.9, let us define the state space:

Ω = {(x, i)|x = 0, 1, . . . , ln = [n/k] and i = 0, 1, . . . , k − 1}

and the Markov chain {Yt|t = 0, 1, . . . , n} on Ω by

Yt = (Nt,k, Et)

where Nt,k is the number of non-overlapping consecutive k successes that occurs in

the first t trials. To make things a little easier we will define the ending block Et

to be equal with the number of trailing successes modulo k, with an ending block

of zero only in the case where the last outcome is F and for the cases in which the

modulo is zero to be denoted by γ . In this way the forward-backward procedure is

simplified a bit. So, we will have

Yt =(x, γ)

= in the first t trials there are x runs of k consecutive successes

and the last m > 0 trailing successes satisfy m ≡ 0(mod k)

and

Yt =(x, 0)

= in the first t trials there are x runs of k consecutive successes

and the last trial is F (Xt = F )
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If Xt were i.i.d. we could define the ending block without the intermediary state γ.

Now it is easy to see that the transition probabilities are given by

P(Yt = (y, j)|Yt−1 = (x, i)) =



pFF , if y = x, j = 0, i = 0

pFS, if y = x, j = 1, i = 0

pSF , if y = x, j = 0, i = 1, . . . , k − 1

pSS, if y = x, j = i+ 1, i = 1, . . . , k − 2

pSS, if y = x+ 1, j = γ, i = k − 1

1, if y = x = ln, j, i = k − 1

0, otherwise

The probability transition matrix will be

M(Nn,k) =



A∗ B∗

A B O
. . . . . .

. . . . . .

O A A

A∗∗


where the matrix A∗ is

A∗ =



(0, 0) pFF pFS . . . . . . 0

(0, 1) pSF 0 pSS . . . 0
...

...
. . . . . .

...

(0, k − 2) pSF 0 . . . . . . pSS

(0, k − 1) pSF 0 . . . . . . 1


k×k

,

the matrix and B∗ is

B∗ =



(1, γ) (1, 0) . . . (1, k − 2) (1, k − 1)

0 0 . . . . . . 0

0 0 . . . . . . 0
...

. . . . . .
...

0 0 . . . . . . 0

pSS 0 . . . . . . 0


k×k+1

,
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and the matrix A is

A =



(i, γ) (i, 0) (i, 1) . . . (i, k − 2) (i, k − 1)

0 pFF pFS . . . . . . 0

0 pSF 0 pSS . . . 0
...

...
. . . . . .

...

0 pSF 0 . . . . . . pSS

0 pSF 0 . . . . . . 0


k+1×k+1

.

The matrix B has the same form as B∗ only its k + 1× k + 1, and the matrix A∗∗

is the same as A with the exception that the last line in (0, . . . , 0, 1). As we can

see, the imbedded chain is MVB as is described in Definition 2.1. We need to pay

attention on the initial distribution, but as we described in the forward-backward

principle we can consider that the chain starts in the dummy state ∅ and the initial

probabilities are (pS, pF ). This run statistic was studied by Fu and Koutras in [4]

and by Koutras and Alexandrou in [13]. They also showed that others related run

statistics, like Mn,k-the number of overlapping consecutive k successes and Ln(S)-the

longest success run, are Markov chain imbeddable.

The next example shows how to apply the forward-backward procedure in both non-

overlap and overlap counting.

Example 4.2. Lets suppose that we are in the framework of Example 1.8, that is

the sequence (Xt)t=1,n is Markov dependent (homogeneous) three-state trials with

transition probability matrix

A =

 p11 p12 p13

p21 p22 p23

p31 p32 p33


over the alphabet S = {b1, b2, b3}, and lets consider the pattern Λ = b1b2b1. We will

give the state space and the transition probability for both non-overlap and overlap

counting in the case of n = 5 trials. The state space for non-overlap is:

Ω ={∅, (0, b1), (0, b2), (0, b3), (0, b1b2), (1, b1b1b2b1),

(1, b1), (1, b2), (1, b3), (1, b1b2)}

and for overlap

Ω̂ ={∅, (0, b1), (0, b2), (0, b3), (0, b1b2), (1, b1b2b1),

(1, b1), (1, b2), (1, b3), (1, b1b2), (2, b1b2b1)}
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Notice that in the case of non-overlap counting the state (1, b1b2b1) goes in (1, b2)

for Xt = b2 while for overlap counting it goes to (1, b1b2), and the additional state

(2, b1b2b1) appears (l̂n = 2). Now we give the transition probability matrices:

• for non-overlap counting

M =



∅ 0 p1 p2 p3 0 0 0 0 0 0

(0, b1) 0 p11 0 p13 p12 0 0 0 0 0

(0, b2) 0 p21 p22 p23 0 0 0 0 0 0

(0, b3) 0 p31 p32 p33 0 0 0 0 0 0

(0, b1b2) 0 0 p12 p13 0 p11 0 0 0 0

(1,Λ) 0 0 0 0 0 0 p11 p12 p13 0

(1, b1) 0 0 0 0 0 0 p11 0 p13 p12

(1, b2) 0 0 0 0 0 0 p21 p22 p23 0

(1, b3) 0 0 0 0 0 0 p31 p32 p33 0

(1, b1b2) 0 0 0 0 0 0 0 0 0 1


• for overlap counting

M̂ =



∅ 0 p1 p2 p3 0 0 0 0 0 0 0

(0, b1) 0 p11 0 p13 p12 0 0 0 0 0 0

(0, b2) 0 p21 p22 p23 0 0 0 0 0 0 0

(0, b3) 0 p31 p32 p33 0 0 0 0 0 0 0

(0, b1b2) 0 0 p12 p13 0 p11 0 0 0 0 0

(1,Λ) 0 0 0 0 0 0 p11 0 p13 p12 0

(1, b1) 0 0 0 0 0 0 p11 0 p13 p12 0

(1, b2) 0 0 0 0 0 0 p21 p22 p23 0 0

(1, b3) 0 0 0 0 0 0 p31 p32 p33 0 0

(1, b1b2) 0 0 0 0 0 0 0 p22 p23 0 p21

(2,Λ) 0 0 0 0 0 0 0 0 0 0 1


The vector (p1, p2, p3) corresponds to the initial probability vector given that at time

0 we are in the dummy state, that is P(Y1 = bj|Y0 = ∅) = pj for j = 1, 2, 3. We

notice that in the case of overlap scheme the transition matrix row corresponding to

the state (1,Λ) is different from the one in the case of non-overlap transition matrix.

The following example shows how to compute the distribution, mean and generatibg

function of a waiting time random variable associated with a compound pattern.
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Example 4.3. Lets suppose that X1, X2, . . . is a sequence of Markov-dependent

four-state trials over the alphabet S = {A,C,G, T} and with transition matrix

given by:

P =



A C G T

pAA pAC pAG pAT

pCA pCC pCG pCT

pGA pGC pGG pGT

pTA pTC pTG pTT

 =



A C G T

0.30 0.21 0.22 0.27

0.23 0.23 0.33 0.22

0.28 0.29 0.23 0.20

0.19 0.28 0.23 0.30


We mention that the matrix is estimated over the complete genome of the bacteria

Escherichia coli as described in [15]. We consider the initial distribution vector

(pA, pC , pG, pT ) = (0.25, 0.25, 0.25, 0.25) and the compound pattern Λ = Λ1∪Λ2∪Λ3

where Λ1 = ACA, Λ2 = GGCG and Λ = CGTT . Following the Theorem 2.3, we

will begin by finding the distribution of the waiting time W (Λ). If we denote by

∅ = 1 T = 5 CG = 9 Λ3 = α3

A = 2 AC = 6 CGT = 10

C = 3 GG = 7 Λ1 = α1

G = 4 GGC = 8 Λ2 = α2

then the state space is Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, α1, α2, α3} and the transition

matrix corresponding with the imbedded chain Y1, Y2, . . . is given by

M =



1 2 3 4 5 6 7 8 9 10 α1 α2 α3

1 0 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0

2 0 0.30 0 0.22 0.27 0.21 0 0 0 0 0 0 0

3 0 0.23 0.23 0 0.22 0 0 0 0.33 0 0 0 0

4 0 0.28 0.29 0 0.20 0 0.23 0 0 0 0 0 0

5 0 0.19 0.28 0.23 0.30 0 0 0 0 0 0 0 0

6 0 0 0.23 0 0.22 0 0 0 0.33 0 0.23 0 0

7 0 0.28 0 0 0.20 0 0.23 0.29 0 0 0 0 0

8 0 0.23 0.23 0 0.22 0 0 0 0 0 0 0.33 0

9 0 0.28 0.29 0 0 0 0.23 0 0 0.20 0 0 0

10 0 0.19 0.28 0.23 0 0 0 0 0 0 0 0 0.30

α1 0 0 0 0 0 0 0 0 0 0 1 0 0

α2 0 0 0 0 0 0 0 0 0 0 0 1 0

α3 0 0 0 0 0 0 0 0 0 0 0 0 1


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Next table gives some selected values for the waiting time probabilities:

n P(W (Λ) = n) P(W (Λ) ≥ n)

3 0.009550000000000 1.000000000000000

5 0.019575760000000 0.972953250000000

10 0.017692272475628 0.878888187133464

20 0.014436759278876 0.717160459635556

25 0.013041004221151 0.647824930843360

30 0.011780191649146 0.585192805018191

50 0.007843639732009 0.389640650426870

100 0.002837467150353 0.140954019282224

and the mean is E[W (Λ)] = 52.327942042091962 (using the relation described in

Theorem 3.1). It is worth mentioning that in the context of Theorem 3.6, we have

λ1 ≈ 0.9798 and taking n = 1000 the error is:

ε = P(W (Λ) ≥ 1000)− e1000 log(λ1) ≈ 1.1356× 10−10.

The probability generating function is computed using the relation from Theorem 3.1

and is given by:

ϕW (s) = 1 + (s− 1)ξ(I − sN )−11ᵀ =
∆1

∆2

where

∆1 =− s2(2519621181s8 + 21622505850s7 − 109947108150s6 + 697873893750s5+

+ 21153645× 105s4 − 3066425× 106s3 + 48085× 109s2 + 61× 1012s−

− 125× 1011)

and

∆2 =− 16871893731s9 + 134865799200s8 − 579258098100s7 + 337339728× 104s6

− 95999415× 105s5 + 704918× 108s4 + 5345× 1010s3 − 5135× 1011s2+

+ 53× 1014s− 5× 1015

The above formulas were obtained in Matlab and if we compute the derivative of

the generating function in s = 1, then we get the result for the mean. The variance

can be obtained by:

V ar[W (Λ)] = E[W 2(Λ)]− E2[W (Λ)]

using

E[W 2(Λ)] =
d2ϕW (s)

ds2

∣∣∣∣
s=0
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The result is V ar[W (Λ)] = 2365.67691827216. Another method to compute the

variance is given by Theorem 3.3.

Another way of finding the p.g.f. is by using the Theorem 3.2, which leads to the

following system:

φ1(s) = s

φ2(s) = φ2(s)pAA + φ3(s)pCA + φ4(s)pGA + φ5(s)pTA + φ7(s)pGA + φ8(s)pCA+

+ φ9(s)pGA + φ10(s)pTA + pAs

φ3(s) = φ3(s)pCC + φ4(s)pGC + φ5(s)pTC + φ6(s)pCC + φ8(s)pCC + φ9(s)pGC+

+ φ10(s)pTC + pCs

φ4(s) = φ2(s)pAG + φ5(s)pTG + φ10(s)pTG + pGs

φ5(s) = φ2(s)pAT + φ3(s)pCT + φ4(s)pGT + φ5(s)pTT + φ6(s)pCT + φ7(s)pGT+

+ φ8(s)pCT + pT s

φ6(s) = φ2(s)pAC

φ7(s) = φ4(s)pGG + φ7(s)pGG + φ9(s)pGG

φ8(s) = φ7(s)pGC

φ9(s) = φ3(s)pCG + φ6(s)pCG

φ10(s) = φ9(s)pGT

The system was deduced using MuPAD (symbolic notebook from Matlab).

Next example will show how to construct the state space and the transition matrix

in the case of the r-th waiting time of a compound patter.

Example 4.4. For simplicity, lets take {Xt|t = 1, 2, . . . } to be a sequence of Markov-

dependent two-state trials over the alphabet S = {1, 2}, with initial probability

vector (p1, p2, p3), and transition matrix:

P =

(
p11 p12

p21 p22

)
Lets take the compound pattern Λ = Λ1∪Λ2, where Λ1 = 121 and Λ2 = 22. We will

define the state space of the imbedded Markov chain associated with the waiting

time W (2,Λ) as described in Remark 2.4:

Ω(2) = {∅} ∪ Ω1 ∪ Ω2 ∪ {α1, α2}

where α1, α2 correspond to the second occurrence of the patterns Λ1,Λ2, and

Ω1 = {(0, 1), (0, 2), (0, 12), (1, 1), (1, 2), (1, 12)}
Ω2 = {(0, 1∗), (1, 2∗)}
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Notice that B = {1∗, 2∗} since the last symbols in the patterns Λ1 and Λ2 are {1, 2},
and (1, 1∗) means that we have one occurrence of the pattern Λ with the ending

symbol 1 (just occurred for the first time). The corresponding transition matrix

(under non-overlapping counting), M (2) is given by:

M (2) =



∅ (0, 1) (0, 2) (0, 12) (1, 1∗) (1, 2∗) (1, 1) (1, 2) (1, 12) α1 α1

0 p1 p2 p3 0 0 0 0 0 0 0

0 p11 0 p12 0 0 0 0 0 0 0

0 p21 0 0 0 p22 0 0 0 0 0

0 0 0 0 p21 p22 0 0 0 0 0

0 0 0 0 0 0 p11 p12 0 0 0

0 0 0 0 0 0 p21 p22 0 0 0

0 0 0 0 0 0 p11 0 p12 0 0

0 0 0 0 0 0 p21 0 0 0 p22

0 0 0 0 0 0 0 0 0 p21 p22

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1


We will end this section with an example dedicated to the scan statistic in a sequence

of two-state trials, and is based primarily on [6].

Example 4.5. In this example we will show how to compute the exact distribution

of the scan statistic for a sequence of two-state trials generated by a Markov source,

using the MCIT. Lets suppose that we have a sequence of homogeneous Markov-

dependent two-state trails (0 and 1) with probability transition matrix:

P =

(
p00 p01

p10 p11

)

and consider the scan statistic of window size r defined as:

Sn(r) = max
t≤t≤n

t∑
k=t−r+1

Xk.

In [13] it is showed that the scan statistic is an imbeddable random variable in the

sense Definition 1.4, but the transition matrix corresponding to the associated chain

is rather big (has order 2r). The next approach is based on [6]. The idea is to express

Sn(r) in terms of the waiting time distribution of a special compound pattern. For
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a given r and k, with 0 ≤ k ≤ r we consider the following set of simple patterns:

Fr,k = {Λi|Λ1 = 1 . . . 1︸ ︷︷ ︸
k

,Λ2 = 10 1 . . . 1︸ ︷︷ ︸
k−1

, . . . ,Λl =

r︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸
k−1

0 . . . 01}

that is the set of all the simple patterns with exactly k symbols of 1 and with length

at least r. We mention that the number of elements in Fr,k is given by the formula:

l =
r−k∑
j=0

(
k − 2 + j

j

)
.

Now, taking the compound pattern:

Λ = ∪li=1Λi, Λi ∈ Fr,k

we can compute the distribution of the scan statistic using the relation:

P(Sn(r) < k) = P(W (Λ) ≥ n+ 1).

From Theorem 2.3, we know that W (Λ) is imbeddable and how to construct the

state space and the transition matrix of the imbedded chain.

Taking r = 4 and k = 3 it is not hard to see that

F4,3 = {Λ1 = 111,Λ2 = 1011,Λ3 = 1101}

and, with Λ = Λ1∪Λ2∪Λ3, the corresponding state space of the associated imbedded

chain of the waiting time W (Λ) is:

Ω = {∅, 0, 1, 10, 11, 101, 110, α1, α2, α3}.

The transition matrix is given by:

M =



∅ 0 1 10 11 101 110 α1 α2 α3

∅ 0 q p 0 0 0 0 0 0 0

0 0 p00 p01 0 0 0 0 0 0 0

1 0 0 0 p10 p11 0 0 0 0 0

10 0 p00 0 0 0 p01 0 0 0 0

11 0 0 0 0 0 0 p10 p11 0 0

101 0 0 0 p10 0 0 0 0 p11 0

110 0 p00 0 0 0 0 0 0 0 p01

α1 0 0 0 0 0 0 0 1 0 0

α2 0 0 0 0 0 0 0 0 1 0

α3 0 0 0 0 0 0 0 0 0 1


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where (q, p) is the initial probability vector. Finally we get

P(Sn(r) < k) = ξNn1ᵀ,

where ξ = (1, 0, . . . , 0) and N is the essential matrix.

In the following table, some selected values for n, r, k and P(Sn(r) < k) are given,

both in i.i.d. and Markov case:

n r k p = q = 0.5 p11 = 0.35, p21 = 0.45

100 5 2 2.0002× 10−18 1.6621× 10−14

3 1.1864× 10−9 2.1371× 10−6

7 4 1.8407× 10−7 1.2684× 10−4

5 8.7094× 10−4 0.0522

10 5 3.4100× 10−7 1.9939× 10−4

6 2.3130× 10−4 0.0231

300 5 2 3.3094× 10−54 2.2786× 10−42

3 7.7147× 10−28 5.8484× 10−18

7 4 2.5286× 10−21 1.1610× 10−12

5 3.9156× 10−10 1.1228× 10−4

10 5 1.1746× 10−20 3.6584× 10−12

6 5.4061× 10−12 8.0995× 10−6

500 5 2 5.4756× 10−90 3.1237× 10−70

3 5.0167× 10−46 1.6005× 10−29

7 4 3.4735× 10−35 1.0627× 10−20

5 1.7604× 10−16 2.4150× 10−7

10 5 4.0461× 10−34 6.7122× 10−20

6 1.2635× 10−19 2.8431× 10−9

All the values from the above table, were obtained using MATLAB®.

5. Appendix

In this section we will give the matlab code used for computations in Example 4.3

and Example 4.5.

,

1 %Waiting time distribution for compound pattern

2 %=============================================

3 %number of letters in the alphabet

4 m=input('Give the number of symbols in the alphabet:');
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5 l=input('Give the number of patterns:');

6 LL='';

7 for i=1:l

8 L=input(['Give the ',num2str(i),' pattern:'],'s');

9 LL=char(LL,L);

10 end

11 %the collection of given patterns in column format

12 LL=LL(2:end,:);

13 sz=size(LL);

14 sz=sz(2);

15 for i=1:l

16 for j=1:sz

17 if str2double(LL(i,j))>m

18 disp(['The pattern in not correct since the symbol ',...

19 LL(i,j),' is not in the alphabet']);

20 break;

21 end

22 end

23 end

24 %=========================

25 %defining the state space

26 %=========================

27 S=[];

28 for k=1:m

29 S=char(S,num2str(k));

30 end

31 S=S(2:end,:); %the alphabet

32 omega=[];

33 for i=1:l

34 L=strtrim(LL(i,:));

35 SL=[];

36 if length(L)≤2
37 SL=[];

38 else

39 for j=2:length(L)-1

40 SL=char(SL,L(1:j));

41 end

42 SL=SL(2:end,:);

43 end

44 if isempty(SL)==0

45 omega=char(omega,SL);

46 end

47 end

48 omega=omega(2:end,:);

49 A=cellstr(LL);

50 c=[];

51 for i=1:length(omega)-1

52 if isempty(strmatch(omega(i,:),omega((i+1):end,:),...

53 'exact'))==0
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54 v=strmatch(omega(i,:),omega((i+1):end,:),'exact');

55 v=i+v;

56 c=[c,v'];

57 end

58 end

59 omega(c,:)=[];

60 omega=char(S,omega,LL);

61 %=========================

62 %Initial conditions

63 %=========================

64 %the initial probability vector

65 ini=zeros(1,m);

66 disp('Give the initial probability vector:');

67 for i=1:m

68 ini(i)=input(['ini(',num2str(i),')=']);

69 end

70 if sum(ini)6=1
71 disp('The initial vector is wrong: the sum is not equal with 1.');

72 break;

73 end

74 %the transition matrix corresponding to the initial process

75 P=zeros(m);

76 disp('Give the transition matrix P:')

77 for i=1:m

78 for j=1:m

79 P(i,j)=input(['P(',num2str(i),',',num2str(j),')=']);

80 end

81 end

82 for s=1:m

83 if sum(P(s,:))6=1
84 disp(['The transition matrix is wrong since the sum on the ',...

85 num2str(s),' line is not equal with 1.']);

86 break;

87 end

88 end

89 k=length(omega)+1;

90 M=zeros(k,k);

91 %================================

92 %creating the transition matrix M

93 %for non-overlapping case

94 %================================

95 tic

96 for i=1:k

97 for j=1:m

98 if i==k

99 M(1,j+1)=ini(j);

100 continue;

101 end

102 if strcmp(strtrim(omega(i,:)),A)==0
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103 state=strcat(strtrim(omega(i,:)),num2str(j));

104 if isempty(strmatch(state,omega,'exact'))==1

105 g=str2mat(state);

106 ll=length(g);

107 h=zeros(1,ll-1);

108 for t=ll-1:-1:1

109 if isempty(strmatch(g(t:1:end),omega,'exact'))==1

110 state=num2str(j);

111 else

112 h(ll-t)=length(g(t:1:end));

113 end

114 end

115 for t=1:ll-1

116 if h(t)==max(h)

117 u=t;

118 end

119 end

120 if isempty(strmatch(g(ll-u:1:end),omega,'exact'))==0

121 state=g(ll-u:1:end);

122 end

123 end

124 else

125 state=num2str(j);

126 end

127 v=strmatch(state,omega,'exact');

128 u=strtrim(omega(i,:));

129 M(i+1,v+1)=P(str2double(u(end)),str2double(state(end)));

130 end

131 end

132 toc

133 %========================================

134 %computing the waiting time distribution

135 %========================================

136 N=M(1:(end-l),1:(end-l));

137 N=sparse(N);

138 T=zeros(k);

139 T(1:(end-l),1:(end-l))=N;

140 T((end-l+1):end,(end-l+1):end)=eye(l); %full transition matrix

141 xsi=zeros(1,k-l);

142 xsi(1)=1;

143 xsi=sparse(xsi);

144 I=speye(k-l,k-l);

145 V=I-N;

146 un=ones(k-l,1);

147 PWn=zeros(length(1:50),1);

148 MM=0;

149 tic

150 %exact distribution of the waiting time

151 for i=1:50
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152 PWn(i,1)=xsi*(Nˆ(i-1))*un-xsi*(Nˆi)*un;

153 MM=MM+i*PWn(i,1);

154 end

155 Mn=xsi*(V\un); %mean

156 toc

,

1 %Computing scan statistic in a 2 state trails

2 %=====================================================================

3 %n=input('Give the number of trials:');

4 r=input('Give the size of the window:');

5 k=input('Give k:');

6 tic

7 if k>r

8 disp('It is not good!');

9 break;

10 else

11 LL=[];

12 for j=k:r

13 L=ones(1,j);

14 for s=2:j-1

15 if sum(L(2:j-1))6=k+2*(j-k)-2
16 if L(s)==1

17 L(s)=2;

18 end

19 end

20 end

21 v=perms(L(2:j-1));

22 v=unique(v,'rows');

23 sv=size(v);

24 un=ones(sv(1),1);

25 d=[un,v,un];

26 sd=size(d);

27 for i=1:sd(1)

28 J=[];

29 for t=1:sd(2)

30 J=strcat(J,num2str(d(i,t)));

31 end

32 LL=char(LL,J);

33 end

34 end

35 end

36 toc

37 LL=LL(2:end,:);

38 %all corresponding patterns associated with (r,k)

39 LL=unique(LL,'rows');

40 sLL=size(LL);
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41 l=sLL(1);

42 %=========================

43 %defining the state space

44 %=========================

45 S=[];

46 for k=1:2

47 S=char(S,num2str(k));

48 end

49 S=S(2:end,:); %the alphabet

50 omega=[];

51 for i=1:l

52 L=strtrim(LL(i,:));

53 SL=[];

54 if length(L)≤2
55 SL=[];

56 else

57 for j=2:length(L)-1

58 SL=char(SL,L(1:j));

59 end

60 SL=SL(2:end,:);

61 end

62 if isempty(SL)==0

63 omega=char(omega,SL);

64 end

65 end

66 omega=omega(2:end,:);

67 A=cellstr(LL);

68 c=[];

69 for i=1:length(omega)-1

70 if isempty(strmatch(omega(i,:),omega((i+1):end,:),'exact'))==0

71 v=strmatch(omega(i,:),omega((i+1):end,:),'exact');

72 v=i+v;

73 c=[c,v'];

74 end

75 end

76 omega(c,:)=[];

77 omega=char(S,omega,LL); %the state space

78 %=========================

79 %Initial conditions

80 %=========================

81 %the initial probability vector

82 ini=zeros(1,2);

83 disp('Give the initial probability vector:');

84 for i=1:2

85 ini(i)=input(['ini(',num2str(i),')=']);

86 end

87 if sum(ini)6=1
88 disp('The initial vector is wrong: the sum is not equal with 1.');

89 break;



33

90 end

91 %the transition matrix corresponding to the initial process

92 P=zeros(2);

93 disp('Give the transition matrix P:')

94 for i=1:2

95 for j=1:2

96 P(i,j)=input(['P(',num2str(i),',',num2str(j),')=']);

97 end

98 end

99 for s=1:2

100 if sum(P(s,:))6=1
101 disp(['The transition matrix is wrong since the sum on the ',...

102 num2str(s),' line is not equal with 1.']);

103 break;

104 end

105 end

106 lo=length(omega)+1;

107 M=zeros(lo,lo);

108 %================================

109 %creating the transition matrix M

110 %for non-overlapping case

111 %================================

112 tic

113 for i=1:lo

114 for j=1:2

115 if i==lo

116 M(1,j+1)=ini(j);

117 continue;

118 end

119 if strcmp(strtrim(omega(i,:)),A)==0

120 state=strcat(strtrim(omega(i,:)),num2str(j));

121 if isempty(strmatch(state,omega,'exact'))==1

122 g=str2mat(state);

123 ll=length(g);

124 h=zeros(1,ll-1);

125 for t=ll-1:-1:1

126 if isempty(strmatch(g(t:1:end),omega,'exact'))==1

127 state=num2str(j);

128 else

129 h(ll-t)=length(g(t:1:end));

130 end

131 end

132 for t=1:ll-1

133 if h(t)==max(h)

134 u=t;

135 end

136 end

137 if isempty(strmatch(g(ll-u:1:end),omega,'exact'))==0

138 state=g(ll-u:1:end);
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139 end

140 end

141 else

142 state=num2str(j);

143 end

144 v=strmatch(state,omega,'exact');

145 u=strtrim(omega(i,:));

146 M(i+1,v+1)=P(str2double(u(end)),str2double(state(end)));

147 end

148 end

149 toc

150 %========================================

151 %computing the scan statistic distribution

152 %========================================

153 N=M(1:(end-l),1:(end-l));

154 N=sparse(N);

155 clear M A J L LL SL c d g h i j k ll omega sLL state sv t u v

156 %T=zeros(lo);

157 %T(1:(end-l),1:(end-l))=N;

158 %T((end-l+1):end,(end-l+1):end)=eye(l); %full transition matrix

159 xsi=zeros(1,lo-l);

160 xsi(1)=1;

161 xsi=sparse(xsi);

162 un=ones(lo-l,1);

163 tic

164 for j=[100 300 500]

165 Sn=xsi*(Nˆj)*un; % an attempt for computin the scan statistic

166 disp(Sn);

167 end

168 toc
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